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Chapter Two 

𝒔-Domain Circuit Analysis  

2.1Circuit Element Models  

Having mastered how to obtain the Laplace transform and its inverse, we are now prepared to 

employ the Laplace transform to analyze circuits. This usually involves three steps.  

1. Transform the circuit from the time domain to the s-domain. 

2. Solve the circuit using nodal analysis, mesh analysis, source transformation, superposition, or 

any circuit analysis technique with which we are familiar. 

3. Take the inverse transform of the solution and thus obtain the solution in the time domain. 

Only the first step is new and will be discussed here. As we did in phasor analysis, we transform 

a circuit in the time domain to the frequency or s-domain by Laplace transforming each term in 

the circuit. Below we will evaluate the laplace transform of all passive elemnets (𝑹, 𝑳 & 𝑪), and 

than we will evaluate the impedance for all according to “the impedance in the s-domain as the 

ratio of the voltage transform to the current transform under zero initial conditions. 

A- Laplace Transform of a Resistance:- 

The voltage-current relationship in the time domain is 

                … (1) 

So, the impdance of a resistannce (assume zero intial conditions)  is 

𝒁(𝒔) =
𝑽(𝒔)

𝑰(𝒔)
= 𝑹             … (2) 

B- Laplace Transform of an Inductor:- 

As the voltage-current relationship in the time domain is 

              … (3) 

Or,  

              … (4) 

The s-domain equivalents are shown in Fig. 2.1, where the initial condition is modeled as a 

voltage or current source. 

 

 

 

 

Fig 2.1 Representation of an inductor: (a)time domain, 

(b,c) s-domain equivalents. 

Taking the Laplace transform 

Taking the Laplace transform 



 

 

So, the impdance of an inductor (assume zero intial conditions) is 

𝒁(𝒔) =
𝑽(𝒔)

𝑰(𝒔)
= 𝒔𝑳            …(5) 

C- Laplace Transform of a Capacitor:- 

For a capacitor, 

              …(6) 

Or, 

              …(7) 

 

So, the impdance of a capacitor (assume zero intial conditions)  is 

𝒁(𝒔) =
𝑽(𝒔)

𝑰(𝒔)
=

𝟏

𝒔𝑪
            …(8) 

The s-domain equivalents are shown in Fig. 2.2. 

The admittance in the s-domain is the reciprocal of the impedance, or 

              … (9) 
 

The s-domain impedance equivalents for all elements are shown in Fig. 2.3. 

 

 

 

 

 

 

 

Taking the Laplace transform 

Fig 2.2 Representation of a capacitor: (a)time domain, 

(b,c) s-domain equivalents. 

Fig 2.3 Time-domain and s-domain representations of 

passive elements under zero initial conditions. 



Example 2.1:- Find 𝑣0(𝑡) in the circuit of Fig. 2.4, assuming zero initial conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.4 For Example 2.1. 

Fig 2.5 Mesh analysis of the 

frequency-domain equivalent of the 

same circuit. 



Example 2.2:- In the circuit of Fig. 2.6(a), the switch moves from position a to position b at 𝑡 =

0, Find 𝑖(𝑡) for 𝑡 > 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.6 For Example 2.2. 



2.2 Circuit Analysis in 𝒔-Domain 

Circuit analysis is again relatively easy to do when we are in the s-domain. We merely need to 

transform a complicated set of mathematical relationships in the time domain into the s-domain 

where we convert operators (derivatives and integrals) into simple multipliers of 𝑠 and 
1

𝑆
 . This 

now allows us to use algebra to set up and solve our circuit equations. The exciting thing about 

this is that all of the circuit theorems and relationships we developed for dc circuits are perfectly 

valid in the s-domain. 

Example 2.3:- Consider the circuit in Fig. 2.7(a). Find the value of the voltage across the capacitor 

assuming that the value of 𝑣𝑠(𝑡) = 10𝑢(𝑡)𝑉 and assume that at 𝑡 = 0 , −1 𝐴 flows through the 

inductor and +5 𝑉 is across the capacitor. 

    

 

 

 

 

 

Fig 2.7 For Example 2.3. 



Example 2.4:- Assume that there is no initial energy stored in the circuit of Fig. 2.8 at 𝑡 = 0  and 

that at 𝑖𝑠 = 10 𝑢(𝑡)𝐴  (a) Find at 𝑉0(𝑠)  using Thevenin’s theorem. (b) Determine at 𝑣0(𝑡) . 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.8 For Example 2.4. 



2.3 Transfer Functions 

The transfer function is a key concept in signal processing because it indicates how a signal is 

processed as it passes through a network. It is a fitting tool for finding the network response, 

determining (or designing for) network stability, and network synthesis. The transfer function of 

a network describes how the output behaves with respect to the input. It specifies the transfer 

from the input to the output in the s-domain, assuming no initial energy. So, the transfer function 

𝑯(𝒔) is the ratio of the output response 𝒀(𝒔) to the input excitation  𝑿(𝒔), assuming all initial 

conditions are zero, thus,  

                      … (10) 

The transfer function depends on what we define as input and output. Since the input and output 

can be either current or voltage at any place in the circuit, there are four possible transfer 

functions: 

𝑯(𝒔) = 𝑽𝒐𝒍𝒕𝒂𝒈𝒆 𝑮𝒂𝒊𝒏 =
𝑽𝒐(𝒔)

𝑽𝒊(𝒔)
  

𝑯(𝒔) = 𝑪𝒖𝒖𝒓𝒆𝒏𝒕 𝑮𝒂𝒊𝒏 =
𝑰𝒐(𝒔)

𝑰𝒊(𝒔)
  

𝑯(𝒔) = 𝑰𝒎𝒑𝒆𝒅𝒂𝒏𝒄𝒆 =
𝑽(𝒔)

𝑰(𝒔)
  

𝑯(𝒔) = 𝑨𝒅𝒎𝒊𝒕𝒕𝒂𝒏𝒄𝒆 =
𝑰(𝒔)

𝑽(𝒔)
                   … (11) 

Equation (11) assumes that both 𝑿(𝒔) and 𝒀(𝒔) are known. Sometimes, we know the input 𝑿(𝒔) 

and the transfer function 𝑯(𝒔). We find the output 𝒀(𝒔) as 

𝒀(𝒔) = 𝑯(𝒔)𝑿(𝒔)                     … (12) 

and take the inverse transform to get 𝑦(𝑡). 

 

 

 



Example 2.5:- Determine the transfer function H(s) = Vo(s)/Io(s) of the circuit in Fig. 2.9. 

 

 

            

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.9 For Example 2.5. 



Example 2.6:- For the s-domain circuit in Fig. 2.10, find: (a) the transfer function 𝐻(𝑠) = 𝑉𝑜/𝑉𝑖 

(b) the impulse response, (c) the response when 𝑣𝑖(𝑡) = 𝑢(𝑡) 𝑉 (d) the response when 𝑣𝑖(𝑡) =

8 𝑐𝑜𝑠 2𝑡  𝑉. 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.10 For Example 2.6. 



2.4 Natural Response and s-Plane 

In this section, we consider how such plots can be used to obtain the complete response of a 

circuit—natural plus forced—provided the initial conditions are known. The advantage of such 

an approach is a more intuitive linkage between the location of the critical frequencies, easily 

visualized through the pole-zero plot, and the desired response. 

Let us introduce the method by considering the simplest example, a series 𝑅𝐿 circuit as shown in 

Fig. 2.11. A general voltage source 𝑣𝑠(𝑡) causes the current 𝑖 (𝑡) to flow after closure of the 

switch at 𝑡 =  0. The complete response 𝑖(𝑡) for 𝑡 >  0 is composed of a natural response and a 

forced response: 

𝑖(𝑡)  =  𝑖𝑛(𝑡)  +  𝑖𝑓(𝑡)      … (13) 

For this circuit, we have 

𝐼𝑓(𝑠) =
𝑉𝑠

𝑅+𝐿𝑠
=

1

𝐿

 𝑉𝑠 

𝑅/𝐿+𝑠
     … (14) 

 

 

Next we consider the natural response. From previous experience, we know that the form will be 

a decaying exponential with the time constant 𝐿/𝑅, but let’s pretend that we are finding it for the 

first time. The form of the natural (source-free) response is, by definition, independent of the 

forcing function; the forcing function contributes only to the magnitude of the natural response. 

To find the proper form, we turn off all independent sources; here, 𝑣𝑠(𝑡) is replaced by a short 

circuit. Next, we try to obtain the natural response as a limiting case of the forced response. 

Returning to the frequency-domain expression of Eq. 14, we obediently set 𝑉𝑠  =  0. On the 

surface, it appears that 𝐼(𝑠) must also be zero, but this is not necessarily true if we are operating 

at a complex frequency that is a simple pole of 𝐼(𝑠). That is, the denominator and the numerator 

may both be zero so that 𝐼(𝑠) need not be zero. 

Fig 2.11 An example that illustrates 

the determination of the complete 

response through a knowledge of the 

critical frequencies of the 

impedance faced by the source. 



Let us inspect this new idea from a slightly different vantage point. We fix our attention on the 

ratio of the desired forced response to the forcing function. We designate this ratio H(s) and define 

it to be the circuit transfer function. Then, 

𝐼𝑓(𝑠)

𝑉𝑠
= 𝐻(𝑠) =

1 

𝐿(𝑅/𝐿+𝑠)
     … (15) 

In this example, the transfer function is the input admittance faced by 𝑉𝑠 . We seek the natural 

(source-free) response by setting 𝑉𝑠  =  0. However, 𝐼𝑓(𝑠)  =  𝑉𝑠𝐻(𝑠), and if 𝑉𝑠  =  0, a nonzero 

value for the current can be obtained only by operating at a pole of 𝐻(𝑠). The poles of the transfer 

function therefore assume a special significance. 

In this particular example, we see that the pole of the transfer function occurs at 𝑠 =  −𝑅/𝐿 +

 𝑗0, as shown in Fig. 2.12. If we choose to operate at this particular complex frequency, the only 

finite current that could result must be a constant in the s-domain (i.e., frequency-independent). 

We thus obtain the natural response. 

𝐼 (𝑠 =  −
𝑅

𝐿
+  𝑗0) = 𝐴     … (16) 

where 𝐴 is an unknown constant. We next desire to transform this natural response to the time 

domain. Our knee-jerk reaction might be to attempt to apply inverse Laplace transform techniques 

in this situation. However, we have already specified a value of  𝒔, so that such an approach is 

not valid. Instead, we look to the real part of our general function 𝑒𝑠𝑡 , such that 

𝑖𝑛(𝑡)  =  𝑅𝑒{𝐴𝑒𝑠𝑡}  =  𝑅𝑒{𝐴𝑒−
𝑅𝑡

𝐿   }   … (17) 

In this case we find 

𝑖𝑛(𝑡)  =  𝐴𝑒−
𝑅𝑡

𝐿       … (18) 

so that the total response is then 

𝑖(𝑡)  =  𝐴𝑒−
𝑅𝑡

𝐿  + 𝑖𝑓(𝑡)     … (19) 
Fig 2.12 Pole-zero constellation of 

the transfer function H(s) 



Example 2.7: For the source-free circuit of Fig. 2.13, determine expressions for 𝑖1 and 𝑖2 𝑓𝑜𝑟 𝑡 >

 0, given the initial conditions 𝑖1(0)  =  𝑖2(0)  =  11 𝐴. 

 

 

 

 

 

Fig 2.13 For Example 2.7 


